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In publications devoted to studying nonstationary deformation of extended cylindrical 
structures under the action of moving surface loads (see e.g. [1-3]) considerable attention 
is given to analyzing dispersion curves (dependence of phase velocity c in wave number q) 
which make,it possible to reveal singular points (q,, c,)where phase and group (=g = c + qdc]dq) 
velocities are equal. It was shown in [2] that group waves with lengths close to 2~/q, 
propagate almost without dispersion and they form a wave packet with a quasistationary en- 
velope moving with constant velocity c,. The value c = c, determines the critical velocity 
of load movement. Numerical modelling of bending resonance waves in a cylindrical shell 
is given in [4], and for a more complex system, i.e., for a shell with a damping medium, 
it is given in [5] where it is also shown that the concentrated part of the spectrum in 
relation to parameters of the system may be a different number of singular points, and in 
spite of the same level in the growth of resonance waves of a specific asymptotic the quali- 
tative picture of the development of perturbations with different cj,,(j = 1 .... , m; m 
is number of singular points) is different. This fact, detected in a numerical experiment, 
required theoretical substantiation and additional analysis of the results which is given 
below. 

A pure bending stressed state is considered for an infinitely long thin cylindrical 
shell in contact with a medium having a density of m 0 and a damping frequency of f2. The 
set of equations of motion in modelling the medium by inertial masses has the form 

"" e w  (Iv) w Jc h-lmo/2 (W W) -[- Qlh -1, W---- -- ,x -- 

= -- rH -I = (/f /2(w W ) @ Q 2  "o , e = h 2 / t 2 ,  mo too~p, 
(1.1) 

where w, W are displacements of the shell and damping masses Q1,2 ---- AlmHo(t)Ho(co t -- ]x]) are 

loads applied to the shell and masses (A 1 2 are amplitudes, H0(z ) is ~eavyside function); 
h is shell thickness; sound velocity in a thin plate cp = ]/E/[p(i--v2)] , shell material 

density p, and its radius R serve as unit of measurement. 

As a result of loading symmetry it is sufficient to consider region x ~ 0 when in plane 
t trf 

x = 0 boundary conditions w,x = w.x = 0 (x = 0) should be fulfilled. The initial conditions 

are zero conditions, and with x § ~ the following conditions is set for the study w, W + 0 
(x  § ~) .  

We apply to (i.I) integral Laplace transforms with respect to t (with parameter p) and 
Fourier transforms with respect to x (with parameter q). We give the two-stage transform 
the symbol ()LF. Then the solution in the transforms is written as: 

W LF 

/ Q2 wcF=(p2+f i )<)~F + 2 cF hA (p, q) 
(p2 _~ gq4 _~ I) m -1  LF 2 h o Q2 + f (QfF +Q2r'F) 

hA (p, q) 

(1.2) 

where A(p, q) is dispersion operator: 

A(p, q) = (p2 + ~q~ + i)(p2 +/2) + h lmd~t (1.3) 
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Now we consider the dispersion properties of harmonic waves which propagate in the 
test system. In (1.3) we place p = iqc (q is wave number, c is phase velocity) and we equate 
it to zero. As a result of this we obtain a second-degree equation with respect to c 2 which 
determines the two modes of harmonic vibrations. Its roots have the form 

Q(q) = 1/ (a - -  b)/2, c2(q) = ] / ( a  + b)/2', a = dq -2 + sq2, 

b = 1 / a  2 -- 4 f i ( t  + eq~)q -4, el = ]2(1 + h-lmo) + i. 
(1.4) 

Here depending on shell stiffness, density of the medium, and damping frequency, appearance 
is possible on the dispersion curve for the first (lower) mode of different extremes (cj,, 

j = i, 2), a minimum, a maximum, and a point of inflection, and the second mode always has 
a minimum c3, (solid curves in Fig. i; numbers 0, i, 2 correspond to f2 = i; 3.6; 4.9, m 0 = 

0.05), which have a contact with phase curves at points q = qj,, whereas they intersect the 
curve for the first mode at points qj (j = i, 2, 3). Thus, wxth movement of a load with 
critical velocity c perturbations form simultaneously in the system with wavelengths 2~/qj, 

and 2~/qj, and the contribution of resonant waves with a frequency of the form qj,, in the 
overall process is previously unknown in a finite time interval. How the proportion of 
energy takes one or another mode depends on the ratio of amplitudes in breaking down the 
load with respect to forms of movements which relate to this mode, and on the magnitude 
of group velocities at points q = qj. 

We turn to solving set (i.i). It is a problem to obtain the originals in the explicit 
form of (1.2), and therefore we shall find the asymptotics of perturbations with long times 
(t § ~) from the start of load operation. For this we use the method of combined treatment 
of two-stage integral transforms in the vicinity of ray x ~ c j . t - ~ - ~ ,  ~ = c o n s t  [2]. In chang- 

ing over to a ray in transforms fLF (p, q) of the functions soug*ht a substitution is made 

p = s-~i~cj, + iq'x/t (s-+O, qj takes the value qj, or qj, and q' is a small value determining 

the vicinity of points q = • for which subsequent integration is carried out). 
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By omitting intermed&ate calculations we write the asymptotic equations obtained for 
evaluation of perturbations (retaining the contribution from nonincreasing components of 
the solution). When the velocity of the load c = cj, (j = i, 2) corresponds to the maximum 
(minimum) the dispersion curve for the first mode of the asymptotic (t § ~) of perturbations 
has the form 

+ D~,wt 1/2 [F~ (• cos (qj,rl) + F2 (• sin (qJ,~3) sgn q)l, 

~ 2; �9 1 .7 ;~, D w  = __ AlqJ*c.;* B~. ---- (A1 -}'- a ~ / 2 _ _  A q2c? (A 1 -F A z) ] 2 -  2 ~- 

' Z ' 

~ 0 2C 2 ~ [131t~ 1 
B W  : - -  ( a ,  -Jr . ~) t -  + a 2 (~@ + t - q.~ . i , ,  

(A 1 q- A2) 1 2 +  A 2 (8@, -5 t - -  q.~,c~,) h m o l  
D w  : -- 

X 

~I = x - ~j,t, ~o = (4~t- x) (I % I O-x/t ~ = - n (I qol O-~;t 

te~1 l , ~ ]  o 
cP~ - -  2 dq q~q j '  (~ = "-2 dq q=q) , '  Cgl = cgl  (q i ) ,  

r 

= .~hq%~, (d (qj,) - 4,) I~ ?/~, 

(1.5) 

Curves FI(~) and F~(~) are shown in Fig. 2 (curves i and 2); S(z), C(z) are Fresnel inte- 

grals. 
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Expressions similar to (1.5) may also be obtained in the case of conformity of the 
load velocity with the minimum of the curve for the second Mode (j = 3). It can be seen 
from (1.5) that the second term with a common factor Dw,W tl/2 grows without limit with 
an increase in t and with large t it determines the final values of w and W since the 
expression in braces standing in the factor with Bw, W is a bounded function. For finite 
values of t the contribution of each of the two component terms of the asymptotic to the 
overall amplitude may be evaluated by comparing Bw,W and Dw,wtl/2 It is also evident that 

with certain values of some parameters (e.g. Ai, A 2) situations are possible when wave 
resonance does not form for a long time ( Bu,,w>D~,~P/2 ), and the main proportion of the 
energy is transferred to waves with length 2v/qj. 

If the critical velocity of the load corresponds to the value cI, , determined by the 

point of inflection of the lower phase curve, then the asymptotic (t § ~) solution is writ- 
ten as follows: 

R ~2/3 w. W ~ ~,w~ (F3 (• + f ~  (• sgn (~1) C0$ (ql*'q)' 

__ - -  A l q l , c l ,  R:,: = ( A : +  A2) y~ 2 2 
, • = n (I m~l t) -113, 

2 2 --I RW = _ _  (A 1 -~L A2)/2 _{_ A2 @ql4, + t - -  q l , c l , )  hm o 

= ~ h q L q ,  ( ~  (q~,) - ~L) Ir I ~/~, w~ - o ds ~=~,'  

Fs (• = cos xy sin y3 ~ - -  C sin • (!--- cos y8) 
y:~ a y ,  F4  (• - -  j y3 dy .  

o o 

(1.6) 

Curves for functions 2F3(• ), 2F4(• are presented in Fig. 2 (curves 3 and 4). 

By analyzing (1.6) it is easy to establish that through the system together with the 
load its excited wave moves with the same phase (and group) velocity and increasing ampli- 
tude in proportion to t 2/a The degree of resonant growth compared with (1.5) is markedly 
higher since the order of curvature of the dispersion curve in the vicinity of the point 
of inflection is less than in the vicinity of other extremes. 

A numerical method was used for studying the original Eqs. (i.i) in addition to the 
analytical method. An explicit finite-difference scheme of the "cross" type was used. 
Numerical dispersion was minimized by selecting optimum parameters of the network with which 
there is fulfillment of conditions for stability of the calculation, and the phase curves 
for difference and continuum in the vicinity of extremes are as close as possible. As com- 
parison of the phase relationships for these models shows, it is only possible to obtain 
conformity of critical points (qj,, cj,) with T, 8 § 0 (x, 6 are steps of the network with 

respect to time and coordinate), and therefore in numerical calculations the value of 
cJ* is taken from the differential dispersion relationship, i.e., broken lines in Fig. i (x = 

8 = h = m 0 = 0.05). In any case the second mode has a minimum (e.g. for f2 = 3.6 qa, = 
14.45, Ca, = 0.2610), but the first mode with f2 < 3.6 does not have any singular points, 
with.f 2 = 3.6 it has a point of inflection (ql, = 10.98, cl, = 0.1100) and with f2 > 3.6 
it has two extreme points: a minimum and maximum (with f2 = 4.9, ql, = 9.25, ci, = 0.1130, 
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and q2, ~= 13.45, c2, = 0.1163). 

Oscillograms are presented in Figs. 3-6 for deflection w of a shell calculated with 
= 6 = h = 0.05 and different values of velocity c o for a moving stepwise load. Static 

deflection w in Fig. 6 is shown by a broken-dotted line (it is not considered in the rest 
of the cases), and the broken line relates to the quasistationary envelope. The peak ampli- 
tude is shown in the vicinity of the maximum for each curve provided. 

Analysis of the results points to the fact that the maximum resonant growth (~t 2/3) 
is realized in accordance with asymptotic (1.6) in the case of c o = ci, = 0.i~i00 (f2 = 3.6), 

and spreading of the packet with supporting frequency ql, = 10.98 is at a minimum and ~tl/3 

(see Fig. 3; envelopes of oscillograms for w in sections x = i0; 20 (curves i and 2), t < 

300, A l = i, A 2 = 0). When c o = ci, = 0.1130 wave resonance also arises in the system, but 
here bending perturbations grow with time as t I/2 , and the packet with a frequency of form 
ql, = !9.25 also spreads in proportion to t I/2 (curves 3 and 4 with the conditions indicated 
above). 

In addition, for the same calculated values of time and co = c2, = 0.1163 the resonance 
process does not manage to develop (see Fig. 4: oscillograms of w in sections x = i0; 20, 
t < 300, A l = i, A 2 = 0, static deflection is not considered). Here the maximum spreading 
of the wave packet is recorded in which the contribution of the "resonance" frequency of the 
form (q2, = 13.45) is small, but then a wave with frequency q2 predominates whose group 
velocity is much less. In comparing the numerical and analytical results acceptable quali- 
tative and quantitative conformity is detected which apparently would not be observed with 
absence in (1.5) of the nonincreasing term which gives a very marked contribution in the ini- 
tial stage. The delay in developing resonance in the test situation may be quite prolonged. 
This is confirmed in particular by oscillograms for w (see Fig. 5) obtained using asymptotic 
solution (1.5) in sections x = 40; 160 (t < 1500, A l = I, A 2 = 0), from which it can be seen 
that bending perturbations with "resonant" frequency of the form q2, = 13.45 (leading group) 
start to develop actually with relative large values of time (or at a considerable distance 
from x = 0). 

If with c o = 0.1163 we consider simultaneous loading of a shell and the damping masses, 
and here we select values of amplitudes A I and A 2 so that in asymptotic (1.5) factor B w 
equals zero, then it is possible to minimize the effect of perturbations with a "nonresonant" 
frequency of form qj on forming the resultant wave packet and the development of resonance 
in the system. 

The process of resonance "delay" is also realized with c o = ca, = 0.2610 (see Fig. 6: 
oscillograms for w in sections x = i0; 20, t < 300, A I = I, A 2 = 0). Here there is mainly 
excitation of the first mode and perturbations relating to it are described by a simple 
asymptotic: w = w~ - cos q~c3,t), which corresponds to the limiting case c o + ~. 

By generalizing the results provided it is noted that in a mechanical system for which 
dispersion analysis reveals existence of some wave numbers qj, and qj with one and the same 
phase velocity c j, of perturbation propagation, a long delay is possible in forming wave 
resonance excited by a load moving with critical velocity c o = ci,.,. Thus, in constructing 

oo -- e, asymptotic estimates (t § ) for perturbations which propagate in the system it is desirable 
to retain also "nonincreasing" terms since only in this case is it possible to obtain adquate 
description of the wave process in question in a finite time interval which is required in 

practical problems. 
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